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Abstract
The accurate assessment of beam quality is one of the

most important aspects in the operation of irradiation facil-
ities such as IRRAD at CERN. The Beam Profile Monitor
(BPM) sensor system developed there for the high-intensity
Proton Synchrotron beam features minimal particle inter-
action, radiation hardness and good sensitivity. It provides
a wealth of high-quality beam-profile data not available in
other facilities, enabling the development of data process-
ing more advanced than before. To further exploit these
BPM system’s features, we investigate whether innovative
Machine Learning (ML) techniques can be adapted to such
an infrastructure and improve upon existing data analysis
techniques.

This paper details the application study of (1) autoencoder
architectures to perform the automatic pattern recognition
and anomaly detection of proton beam profiles, and (2) deep
learning techniques to predict relevant beam parameters.
We applied this ML-based approach to a new dataset of
BPM data taken during a recent run of IRRAD, and our
preliminary results demonstrate acceptable performance in
comparison to existing methods. This work is a first step
towards a data-driven irradiation-experiment facility.

INTRODUCTION
The IRRAD facility is located on the T8 beamline of the

experimental East Area at CERN. For its operation, the fa-
cility exploits a 24 GeV/c proton beam extracted from the
Proton Synchrotron (PS) ring. This beam requires constant
quality monitoring; therefore, along the beamline, four Beam
Profile Monitor (BPM) sensors are placed. This setup en-
ables constant and real-time monitoring of the transverse
beam profile, which is, nominally, Gaussian with a size of
12 × 12 mm2 FWHM (Full Width at Half Maximum) [1].
This monitoring information, available on dedicated web-
pages, is used by the beam-operation team to properly steer
the irradiation beam, as well as by the IRRAD users, to
analyze the data of their irradiation experiments.

The BPM sensors, developed at IRRAD and based on the
Secondary Electron Emission effect [2], feature partial grids
of 39 pixelated metal pads of about 4×4 mm2 area (Fig. 1).
They are connected to a dedicated 40-channel electronic
Data Acquisition (DAQ) system. This unique setup provides
∗ jaroslaw.szumega@cern.ch

an average stored data bandwidth of about 10 Mb/day per
BPM.

Since each BPM is structured as a pixelized pattern of
pads, each single profile measurement may be easily pre-
processed so as to be treated as an image. With such an
approach, a rather large image dataset can be prepared from
BPM measurements, thus opening up the possibility of de-
veloping Artificial Intelligence (AI)-based analyses of the
IRRAD beam profiles and the definition of new metrics
for beam characterization. In particular, one can envision
training Machine Learning (ML) models towards automatic
classification or anomaly detection of beam profiles.

Figure 1: Graphical model of a BPM-sensor printed circuit
board (PCB) (left-hand side), confronted with an example
of measurement data seen as an image (right-hand side).

To perform beam-profile tracking and characterization,
representing BPM data as images leads to considering us-
ing computer-vision-based processing techniques such as
Convolutional Neural Networks (CNN), which happen to
be already well known for their versatile and efficient appli-
cations in the field of High-Energy Physics ( [3], [4], [5]).
Moreover, ML methods have been used already in a vari-
ety of contexts related to accelerator tuning [6] and beam
prognostics for particle-accelerator modeling [7]. Other
complex systems dealing with high-energy beams, such as
high-power laser systems, also benefit from the use of deep-
learning methods [8], in particular when using Autoencoder
(AE)-based architectures.

In production irradiation facilities, beams are (hopefully)
most of the time properly calibrated, and thus most of the im-
ages we collected within the IRRAD BPM dataset represent
“good”, i.e., well-centered cases. Distinguishing those from
the rather less frequent “bad” cases can be seen as an instance
of the One-Class Classification problem. For such cases, AE
solutions have been shown to be well-suited [9], since they
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encode the structure of the good data, thus yielding lower
reconstruction errors for them than for bad ones.

In this paper, using IRRAD unique BPM data, we inves-
tigate experimentally how AE-based techniques compare
to traditional statistics-based methods when (1) character-
izing nominal beam profiles and (2) performing anomaly
detection during beam-profile monitoring, both in terms of
accuracy and performance. These two tasks must be prop-
erly managed when operating an irradiation facility; thus,
this is the main focus of this work.

RESOURCES
We describe below (1) the original BPM dataset we gath-

ered and (2) the AE architecture we developed to perform
anomaly detection.

Beam-Profiles Dataset
Our work relies on a new 2-part dataset composed of

images representing centered- and off-centered beam profiles
(see Fig. 2). Each image is represented by a matrix of 7×9
grayscale values, each linearly normalized to the range (0.0,
0.1); the 24 peripheral pixels that do not correspond to actual
pads are set to 0.0. The colored representation is used solely
for visual purposes (“plasma” colormap was used).

Figure 2: Two examples of BPM recorded data (the top row
represents a well-centered beam profile, while the bottom
row, an off-centered one), visualized as low-resolution im-
ages, where each pad is represented as a square pixel (the
greyscale brightness corresponds to the measured value (left-
hand side), while, to provide better visualization, a colormap
has been assigned to the data in the right-hand side).

The first part of this dataset includes the beam-monitoring
data taken during Week 20 of the IRRAD run in Year 2024.
Currently, this sub-dataset consists of 𝑁1 = 40, 543 sam-
ples, with 22,206 images of good-quality beam profiles and
18,337 examples of off-centered ones. This was a very par-
ticular week in 2024 when the well-centered and off-centered
samples were observed with a ratio 0.55:0.45.

The second part of the dataset, used only for model train-
ing, consists of the rest of the full year 2024 of well-centered
profiles. In 2024, we recorded almost 𝑁2 = 1, 400, 000 sam-
ples. Among them, the ratio of centered and off-centered
beams was 0.85:0.15. This set of samples is clearly imbal-
anced, due to the nature of operational beam quality, which
stays within an acceptable range most of the time. To main-
tain the training-verification integrity, the special data of

Week 20 will be excluded as a separate subset for final veri-
fication.

Figure 3: Horizontal and vertical Gaussian fits (left-hand
side) and center-pad longitudinal spline interpolation (right-
hand side) of a typical IRRAD beam profile (2025, May 19).

To determine whether a beam profile denotes a well-
centered beam, its corresponding image is numerically ana-
lyzed in order to construct the best horizontal and vertical
1D-Gaussian fits (see Fig. 3). Based on the values of the fit
properties, in particular the beam-center coordinates, the spe-
cific class for each beam profile is determined analytically:
an image is considered “good” if its Gaussian-fit intensity
peak is distanced ± 2 mm, both in the x and y directions,
from the central-pad BPM location, considered to be at po-
sition (0, 0). This procedure is currently used at IRRAD to
assess the beam quality during irradiation experiments.

Convolutional Autoencoder
Considering the characteristics of the available data and

our classification-oriented goals, we decided to assess, in
this experiment, whether a Convolutional Autoencoder
(CAE) [10] would constitute an appropriate model. A CAE
is a specific type of autoencoder that is capable of learning
patterns and specific features that are present in a given set
of images. For the learned features, image reconstruction
is possible, as well. However, an accurate result will be
obtained only for the specific classes of images that were
available in the training dataset.

Metrics such as Mean Square Error (MSE) or Mean Abso-
lute Error (MAE) are typically used to assess the difference
between target, 𝑦, and predicted, ̂𝑦, values. Yet, there exist
metrics more specifically adapted to image processing. In
particular, the Structural Similarity Index Measure (SSIM)
is a perception-based metric designed to capture the change
in structural information, luminance, and contrast [11]. It
compares the local patterns of pixel intensities; these fea-
tures make it a good candidate metric for beam-quality as-
sessment with the presented BPM data. The metric values
are within the range (0.0, 1.0), with 0.0 indicating bad and
1.0 perfect reconstruction or quality. Thus, the custom loss
function, 𝐿𝑜𝑠𝑠( ̂𝑦, 𝑦), we use for ML modeling below is de-
fined as 𝐿𝑜𝑠𝑠( ̂𝑦, 𝑦) = 1 − 𝑆𝑆𝐼𝑀( ̂𝑦, 𝑦), also called Structural
Dissimilarity (DSSIM).

ML Architecture
The CAE-based ML architecture we developed (see Fig. 4)

is specified by the following transformation layers (we use
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TensorFlow names in the description) for the encoder and
decoder parts:

• Encoder part:
Input(7,9) → Resizing(16,16) → Conv2D(64, (3,3))
→ MaxPooling2D((2,2)) → Conv2D(16,(3,3))
→ MaxPooling2D((2,2)) → Conv2D(8,(3,3)) →
MaxPooling2D((2,2))

• Decoder part:
Conv2D(8,(3,3)) → UpSampling2D((2,2)) →
Conv2D(16,(3,3)) → UpSampling2D((2,2)) →
Conv2D(64,(3,3)) → UpSampling2D((2,2)) →
Conv2D(1,(3,3)) → Resizing(7,9) → Output(7,9)

This dedicated CAE consists mostly of 2D convolutional
and pooling layers in the encoder, and (de)convolutional and
up-sampling layers in the decoder. Our experiments with
other architectural parameters suggest that this specific CAE
model can properly learn the high-level features of each
BPM image and later use them to reconstruct the sample.

Figure 4: CAE-architecture for BPM-anomaly detection.
Both the input (X) and reconstructed (X') images are used
to compute the similarity metric. Then the discriminator
outputs the decision, based on the SSIM metric, using a
threshold that was experimentally set to 0.95.

EXPERIMENT
Using the TensorFlow fit function, we trained our CAE

model via the second sub-dataset, using only the “good”
images among the 𝑁2 samples, with the usual train-test split
of 0.7:0.3 ratio. The resulting loss, after training on 15
epochs, is 8.8 × 10−4.

Week 20, the first sub-dataset, was used for validation.
Based on Gaussian fits, this is a very specific week of some-
what balanced centered/off-centered beam representations,
as the beam was centered along the x-axis 54.8% of the time,
centered along the y-axis 93.2 % of the time, and remained
in the center of the xy-plane 54.8% of the time.

Taking into account the same “± 2 mm x- and y-centered”
metrics, the CAE model found that 54.77 % of the beam
profiles reconstructed within our chosen SSIM quality range
met the criterion. We provide the confusion matrix for the
CAE (Predicted) and statistical (True) estimations for well-
centered and off-centered beam profiles in Table 1; the F1-
score is 0.6.

DISCUSSION
The final loss value, of 8.8 × 10−4, post training, is rather

low, which suggests that our image-based model is well-
adapted to representing BPM data. Indeed, the accuracies
are within 10% of one another when comparing the CAE

Table 1: Confusion Matrix for the Presented CAE Model

and statistical techniques. Yet, the F1-score can only be con-
sidered as “average”, and using more BPM data for training
(IRRAD has access to multi-year BPM data) or looking at
other similarity metrics must be considered.

Moreover, another important factor needs to be taken into
account: model complexity and execution time. Indeed, the
total assessment of the 𝑁1 samples of actual operation data
took on average 690.9 s with the numerical solution based
on Gaussian fitting (i.e., 58 sample/s) running on a CERN
SWAN machine1; this time shrank to only 16.0 s for the
CAE-based solution2 (i.e., 2,532 sample/s). Thus, the ML-
based computations took about 43 times less time than the
analytical solution to obtain comparable results.

CONCLUSION AND FUTURE WORK
In this paper, we introduced a new, convolutional-

autoencoder-based technique to perform efficient beam pro-
filing in irradiation facilities3. Preliminary experimental
results targeting anomaly detection and beam characteriza-
tion suggest that this approach has a potential to replace
traditional techniques. Moreover, the processing efficiency
of the proposed model allows to consider its usage in the real-
time regime. These are crucial factors for beam-monitoring
systems in any irradiation facility.

Regarding future work, more sophisticated BPM-data-
modeling approaches can be envisioned using novel neural
architectures such as Transformer models with attention
mechanisms [12]. Such developments could allow the pro-
cessing of not only single profiles but also of time series of
beam profiles, i.e., of the longitudinal (time) characteristics
of beam “spills” (see Fig. 3).
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