
DEVELOPMENT OF A FLEXIBLE DIGITAL TWIN FRAMEWORK FOR
ACCELERATORS USING DESIGN PATTERNS

W. Sulaiman Khail∗, P. Schnizer,
Helmholtz-Zentrum Berlin für Materialien und Energie Gmbh, Berlin, Germany

Abstract
Modern accelerator design increasingly relies on prototyp-

ing and validating commissioning software through digital
twins. Digital twins serve as natural test benches for vali-
dating and monitoring the required physics software stack.
These twins must align with the current design state of the
accelerator from the project’s inception to the machine’s
commissioning. The authors have developed a modern digi-
tal twin framework based on software design patterns. Its
architecture emphasizes clean design principles with mini-
mal coupling between components. Its setup requires only
lattice and device configuration data. Thanks to its design, it
seamlessly integrates into prototyping environments or con-
trol system infrastructures. In this paper, we briefly describe
the design patterns underlying this architecture, highlight the
flexibility and advantages of the infrastructure, and outline
the steps needed to implement it for a machine currently
lacking a digital twin.

INTRODUCTION
Particle accelerators are intricate systems composed of

hundreds of tightly coupled devices. Steering and optimiz-
ing these machines during design and commissioning phases
requires not only physical understanding but also sophisti-
cated software infrastructure. Recent advancements have
introduced digital twins—virtual representations of these
machines that are synchronized with the real-world system
and enable predictive analysis, configuration testing, and
operational insight.

Digital twins for accelerators must manage real-time data
exchange, maintain synchrony between models and hard-
ware, and remain adaptable to evolving hardware configura-
tions. To tackle these challenges, we have developed a mod-
ular, pattern-based digital twin framework. This framework
decouples simulation logic, control system integration, and
state management using software design patterns. By lever-
aging patterns such as Simulation System Facade, Simulation
System Update, and Twin State Synchronization [1], as well
as more recent work including the Facilitator/Liaison Pat-
tern, Object Translation Pattern, Measurement Plan Pattern,
and Command Execution Pattern, our framework achieves a
high degree of flexibility and reuse across facilities.

This paper describes the core design decisions and pat-
terns behind the framework and outlines how they were
applied to deploy digital twins for synchrotron light source
facility. The remainder of this paper is structured as fol-
lows: Section describes the core architectural patterns of

∗ waheedullah.sulaiman_khail@helmholtz-berlin.de

the framework. Section outlines deployment across differ-
ent facilities, and Section summarizes lessons learned and
future directions.

PATTERN-DRIVEN ARCHITECTURE OF
THE DIGITAL TWIN FRAMEWORK

Our digital twin framework adopts a layered architecture
that separates simulation core logic from facility-specific
control interfaces. The simulation core is implemented us-
ing the dependency injection pattern [2], which decouples
engine instantiation from usage and allows the dynamic se-
lection of physics engines such as PyAT [3], MAD-NG [4],
or THOR-SCsi [5]. This enables the accelerator model to
remain independent of the chosen backend and easily switch-
able during deployment or testing.

Facility-specific control system logic is separated into
a customizable extension layer. This layer supports both
EPICS [6] and TANGO [7] infrastructures and handles ini-
tialization of process variables (PVs) in EPICS or device
attributes in TANGO. This modular separation provides the
flexibility needed to support heterogeneous facilities using
a common software foundation.

At the heart of this architecture is a set of reusable software
design patterns that structure how simulation data, control
commands, and physical measurements are exchanged and
maintained.

Simulation System Facade This pattern abstracts the
complexity of the virtual accelerator and exposes a unified
interface for interacting with device models and simulation
backends. It hides control-specific details and provides a
consistent setup mechanism regardless of the underlying
infrastructure.

In our EPICS-based implementation, the facade initializes
PVs for each magnet and power converter, including prop-
erties such as magnetic field strength, current, and position
setpoints. Each PV is linked to an update handler, enabling
automatic propagation of changes to the simulation backend
whenever a device parameter is modified.

The TANGO implementation follows the same architec-
tural principles. Each power converter is represented as a
device server exposing attributes like current, voltage, and
status. These attributes are initialized at runtime using cal-
ibration data and device associations. They remain syn-
chronized with the simulation core, enabling bidirectional
interaction between the control system and the virtual ma-
chine.

Both implementations encapsulate simulation initializa-
tion and decouple control-specific concerns, supporting easy
reuse and modular adaptation to new facilities.



16th International Particle Accelerator Conference, Taipei, Taiwan

JACoW Publishing

ISBN: 978-3-95450-248-6

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2025-THPS050

3080

MC6.T33 Online Modelling and Software Tools

THPS050

THPS: Thursday Poster Session: THPS

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2025). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Simulation System Update The Simulation System
Update pattern governs how updates to device pa-
rameters—such as power supply currents or magnet
strengths—are propagated through the system. Each PV
or device attribute is connected to a change handler that
triggers recalculation of affected lattice elements and propa-
gates simulation results back to the views. This event-driven
design ensures tight synchronization between user inputs,
hardware models, and computed outputs.

Twin State Synchronization The digital twin supports
three operational modes: model, shadow, and twin. This
pattern enables controlled switching between these modes
using a centralized state controller. It ensures that updates
to the twin can either remain internal (model), follow physi-
cal measurements passively (shadow), or actively drive and
synchronize with the hardware (twin).

Liaising/Facilitator and Object Translation To bridge
the gap between engineering units and physical quantities,
we employ a liaison-translation mechanism. The Facilitator
maintains associations between simulation components and
their hardware counterparts. The Translation performs unit
conversions using calibration data—e.g., translating between
current and magnetic field strength—ensuring consistency
between the control layer and simulation engine.

Command and Measurement Execution Measure-
ment routines are expressed as serialized command plans.
These are interpreted and executed by the Command Ex-
ecution Engine, which coordinates hardware interaction,
logging, and synchronization with detectors. Command and
Measurement Execution Engines extend this pattern by cou-
pling each step with simulation feedback, enabling detailed
comparison between measured and expected behavior. Plans
can be rewritten at runtime, logged, and reused, facilitating
reproducible diagnostics.

For example, an orbit response measurement plan may
consist of sequential steerer excitations followed by BPM
readouts, with each step linked to both hardware execution
and simulation validation.

Together, these patterns define a coherent architectural
language that supports scalability, testability, and adaptabil-
ity of digital twins across different facilities and simulation
infrastructures.

Architectural Layers and Interaction Flow
The architecture is structured into three main layers: the

application layer, the middle layer, and the backend layer.
Figure 1 illustrates this design. The application layer in-

cludes user-facing services, such as Orbit Response Measure-
ment (ORM), LOCO, or Beam-Based Alignment (BBA) and
many other high level user applications. The middle layer
orchestrates measurement logic, update propagation, state
management, and pattern execution. The backend comprises
interchangeable physics engines (e.g., PyAT, THOR-SCsi,
MAD-NG), the simulation model built from lattice data, and
control system interfaces.

This modular organization enables clean deployment, sim-
plifies facility onboarding, and supports consistent behavior
across various control system protocols.

APPLICATION OF PATTERNS IN
ACCELERATOR DEPLOYMENT

The pattern-based digital twin framework has been suc-
cessfully instantiated and validated using lattice data at
BESSY II and the Metrology Light Source (MLS). These
deployments demonstrate how a clear architectural structure
enables reuse and adaptability across different operational
environments.

From Static to Configurable Twins
The original digital twin prototype was tightly coupled

to a static instance of the BESSY II lattice and simulation
engine. This made adaptation to other facilities cumbersome
and error-prone. Through architectural refactoring using the
patterns described in Section 2, we transformed the system
into a reusable, configurable framework.

Using the Simulation System Facade, the internal logic
was decoupled from the control interfaces, allowing both
EPICS and TANGO bindings to be introduced modularly.
The Dependency Injection approach enables selection be-
tween simulation engines such as PyAT, thor-scsi-lib, or
MAD-NG at runtime without modifying core logic.

Portability and Deployment
Finally, the entire system is packaged using container-

based deployment. Thanks to the modular architecture, site-
specific configuration files are sufficient to instantiate a com-
plete digital twin, dramatically reducing setup overhead for
new facilities or experimental contexts.

The architectural modularity of our digital twin frame-
work is also reflected in its high-level code organization.
Figure 2 illustrates the top-level folder structure, which high-
lights the clear separation between core functionality and
platform-specific implementations.

The core directory contains simulation logic, model def-
initions, orchestration patterns, and backend engine integra-
tion. Platform-specific bindings to control systems such as
EPICS or TANGO are isolated in dedicated modules like
custom_epics and custom_tango, enabling clean substi-
tution or extension for different facilities.

This structure ensures that extending the framework to
a new site or swapping out simulation backends requires
minimal impact on the rest of the codebase. 1 We have also
provided support for container-based deployment, as facility-
specific configurations and interfaces are modularized.

CONCLUSION AND OUTLOOK
We have presented a flexible and reusable digital twin

framework for particle accelerators built around modern

1 project repository: https://github.com/hz-b/dt4acc



16th International Particle Accelerator Conference, Taipei, Taiwan

JACoW Publishing

ISBN: 978-3-95450-248-6

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2025-THPS050

MC6.T33 Online Modelling and Software Tools

3081

THPS: Thursday Poster Session: THPS

THPS050

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2025). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Data Layer

Configuration
JSON / BSON

Magnet Info
JSON / BSON

Lattice
JSON / BSON

Measurement
Results

A
pp

lic
at

io
n

La
ye

r
M

id
dl

e 
La

ye
r

Command
execution 
engine

Measurement
execution 
engine

Events

Simulation 
system
facade

Command 
rewriter

ORM
Other 

Applications 
e.g LOCO, BBA ...

DT / DS

 AT
Acc

Update 
pattern

Accelerator
Model

Virtual Accelerator

Control 
system 
abstraction

Machine

Figure 1: Layer architecture of the digital twin framework.

Figure 2: Top-level project structure illustrating modular
separation of core logic and control-system-specific layers.

software design patterns. The architecture enables clean sep-
aration of concerns, supports multiple simulation engines,
and facilitates deployment across different control system
infrastructures. Ongoing work includes extending pattern
usage to measurement plans, measurement execution and
command execution.

REFERENCES
[1] W. Sulaiman Khail and P. Schnizer, “Patterns in digital twin de-

velopment”, in Proceedings of the 29th European Conference
on Pattern Languages of Programs, People, and Practices,
2024. doi:10.1145/3698322.3698325

[2] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[3] W. A. H. Rogers, N. Carmignani, L. Farvacque, and B. Nash,
“pyAT: A python build of accelerator toolbox”, in Proc.
IPAC’17, Copenhagen, Denmark, May 2017, pp. 3855–3857.
doi:10.18429/JACoW-IPAC2017-THPAB060

[4] L. Deniau, “MAD-NG, a standalone multiplatform tool
for linear and non-linear optics design and optimisation”,
arXiv:2412.16006, 2024.
doi:10.48550/arXiv.2412.16006

[5] P. Schnizer, W. S. Khail, J. Bengtsson, M. Ries, and L. De-
niau, “Progress on Thor SCSI development”, in Proc. IPAC’23,
Venice, Italy, pp. 3413–3416, 2023.
doi:10.18429/JACoW-IPAC2023-WEPL127

[6] L. R. Dalesio, M. R. Kraimer, and A. J. Kozubal, “EPICS ar-
chitecture”, in Proc. ICALEPCS’91, Tsukuba, Japan, pp. 278–
282, 1991.
doi:10.18429/JACoW-ICALEPCS1991-S09IC03

[7] J.-M. Chaize et al., “The ESRF TANGO control system status”,
arXiv:cs/0111028, 2001.
doi:10.48550/arXiv.cs/0111028

https://doi.org/10.1145/3698322.3698325
https://doi.org/10.18429/JACoW-IPAC2017-THPAB060
https://doi.org/10.48550/arXiv.2412.16006
https://doi.org/10.18429/JACoW-IPAC2023-WEPL127
https://doi.org/10.18429/JACoW-ICALEPCS1991-S09IC03
https://doi.org/10.48550/arXiv.cs/0111028


16th International Particle Accelerator Conference, Taipei, Taiwan

JACoW Publishing

ISBN: 978-3-95450-248-6

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2025-THPS050

3082

MC6.T33 Online Modelling and Software Tools

THPS050

THPS: Thursday Poster Session: THPS

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2025). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


