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Trends and challenges of frontier accelerators
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A vision for future accelerators, driven by ML

What is the path to true 
autonomous accelerators? 
(with continuous, robust, 

and safe control)

FLS2023-TH3D3

Maybe reinforcement learning
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Sci.Rep. 14 (2024) 1, 15733

https://inspirehep.net/files/9cd90c200e8835b6d74a1c6a5fbac611
https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
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Why RL for particle accelerators?

4

RL is a promising and powerful framework for adaptive, goal-
directed behaviour in complex environments

Reinforcement learning can:
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ES (simulation)§ Adapt dynamically to changing 

environments
§ Scale better to high-dimensional 

problems than other methods
§ Consider delayed consequences

§ Perform closed-loop control in real time
§ Converge faster than any other 

methods after training

https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
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Segmentation of data
computer learns without prior information about the data

Real-time decisions
computer learns through trial and error

Classification, prediction, forecasting
computer learns by example

SUPERVISED 
LEARNING

UNSUPERVISED 
LEARNING

REINFORCEMENT 
LEARNING

MACHINE 
LEARNING

Spam detection
Weather forecasting
Housing prices prediction
Stock market prediction

Medical diagnosis
Fraud (anomaly) detection
Market segmentation
Pattern recognition

Self-driving cars
Make financial trades
Gaming (AlphaGo)
Robotics manipulation



Dr. Andrea Santamaria Garcia – Reinforcement learning in particle accelerators (IPAC’25, Taiwan) - THYD1

Reinforcement learning 🧠  
More than machine learning

BEHAVIOUR
LEARNING

Psychology (classical conditioning)
Neuroscience (reward system)
Economics (game theory)
Mathematics (operations research)
Engineering (optimal control, planning)

6
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Reinforcement learning  

7

What we understand today as RL (established in 
the 1980s) inherits concepts from:

o Trial-and-error learning
Behavioural basis 🧠
Learning emerges through repeated interaction, 
reward feedback, and adaptation

o Optimal control
Mathematical framework 📐
Markov decision processes (MDPs), Markov 
property, Bellman equation, partially 
observable MDPs (POMDPs), value function, 
policy function, dynamic programming

o Temporal difference learning 
Adaptability and scalability 🔁
Enables prediction and learning from partial experiencesQuanta Magazine



Dr. Andrea Santamaria Garcia – Reinforcement learning in particle accelerators (IPAC’25, Taiwan) - THYD1

So, what can RL do in practice? 🧐

https://www.deepmind.com/publications/playi
ng-atari-with-deep-reinforcement-learning
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Modern RL = deep RL, which allows sequential decision making in continuous and infinite 
environments thanks to function approximation with deep neural networks.
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https://openai.com/index/solving-rubiks-cube/

https://openai.com/index/openai-five/

https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://arxiv.org/abs/1707.02286
https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control
https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control
https://openai.com/index/solving-rubiks-cube/
https://openai.com/index/openai-five/
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RL in a nutshell  

9

An agent (algorithm) learns through trial-and-error 
by interacting with a dynamic environment

Agent 🤖
1. Executes action 𝒂𝒕 
2. Receives observation 𝒔𝒕 
3. Receives scalar reward 𝒓𝒕

Reward 🍰
Scalar feedback signal 𝒓𝒕	 that indicates 

how well the agent is doing at step 𝒕

Goal 🍰 🍰 🍰
Maximisation of cumulative reward 𝒢" 

through selected actions

perception

motivation

free-will

𝓖𝒕(𝝉) = &
𝒌#𝟎

%

𝜸𝒌	𝒓𝒕&𝒌 𝜸 ∈ 𝟎, 𝟏Cumulative 
reward (return)

(𝒮,𝒜,𝒫,ℛ, 𝛾) Stochastic decision making is 
modelled by Markov decision 
processes (MDPs), a 5-tuple

State space

Action space

Transition 
probability

Reward 
function

Discount 
factor

! !
Agent Environment

Reward !!

Action "!

State #!

!!"#

#!"#

!

!

"

!!
!
!
!
!

!
!
!

Goal

Simple concept from which intelligent 
behaviour emerges

"Reward is enough" by Silver et al. (2021)

https://www.sciencedirect.com/science/article/pii/S0004370221000862
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RL in a nutshell 

10

How does the agent “learn”?

🤖

Ø Prediction: evaluate the future given a policy
Ø Control: optimise the future (find the best policy)

What behaviours perform well in this environment?

Policy: agent’s behaviour function (how it picks its actions)

Estimate the utility of taking actions in particular 
states of the environment (evaluation of the policy)

Value function: how good each state and/or action are

𝜋 ∶ 𝒮 → 𝒜
𝜋 𝑠 = 𝑎

𝜋 𝑎 𝑠 = ℙ[𝑎|𝑠]

𝒢!

𝒱! , 𝒬!	 are an estimation of 
where the return distribution 

is centered𝒱#= state-value function 𝒬#	 = action-value function

𝝅∗ = 𝐚𝐫𝐠𝐦𝐚𝐱𝔼𝝅[𝓖𝒕]
𝝅

where 𝜋∗ is the optimal policy 
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RL in a nutshell 

11

How does the agent “learn”?

🧠
1. The agent is in state 𝒔𝒕
2. The agent selects an action 𝒂𝒕	~	𝝅 𝒂 𝒔

This action is chosen based on the agent’s current policy 𝜋, which may 
prioritise actions that maximise expected future reward, e.g.:

𝑎!= arg	max
#

𝒬$(𝑠!, 𝑎)

3. The environment returns:
§ Next state 𝒔𝒕&𝟏	
§ Reward 𝒓𝒕	

4. The agent learns from the experience (𝒔𝒕, 𝒂𝒕, 	𝒓𝒕 , 𝒔𝐭&𝟏)
Value-based methods: update value estimates (assess value of action)
Policy-based methods: directly improve the policy (how to act)

Types of learning

Simulation-based: training in a 
virtual or simulated environment
Experiment-based: direct 
interaction with a real-world system

Online: data is actively collected 
during training
Offline: learns from a fixed 
dataset (supervised learning)

On-policy: policy is updated from 
data collected by the current 
version of the policy

Off-policy: can learn from data 
generated by a different policy

At every time step 𝒕:
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Online Training

Validation

π

Model-free or model-based algorithms

In the real accelerator

Simulation-based Experiment-based
Su#icient and varied 

enough data exists  from 
computationally accurate 

and tractable models

Task is adequately 
constrained and learnable

Robust policy training to 
bridge sim2real gap

Careful algorithm design
Fine hyperparamer tuning

Challenge 1
 Sample e#iciency

Challenge 2 
Partial observability

Challenge 3 
Safety

( low dimensions, informative 
observations, reward shaping)

Ultra-fast control

Challenge 3 
Safety

Conventional control
> 10 kHz action1-100 Hz action

Challenge 4 
Real-time inference

Main challenges of RL deployment
Policy and value functions are approximated by 

deep neural networks (DNNs) 

Generalisation capabilities
à quantity and quality of data

No real convergence guarantees

Training instability due to:
§ Bootstrapped value targets
§ Function approximation bias (net. architecture, 

weight initialization, training dynamics)
§ Hyperparameter sensitivity (high variance in 

performance across random seeds)

𝜃 ← 𝜃 + α∇𝐽 𝜋( |(max
(
	𝐽 𝜋( = max

(
	𝔼$-[𝒢!]
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Challenge 1: sample efficiency

13

Sample efficiency
Training cost

Sample efficiency: number of interactions with the environment required 
to achieve a certain level of performance during the decision-making process

Model-free, on-policy
Policy gradient: REINFORCE
Actor-critic: PPO, A2C

Model-free, off-policy, 
value based
DQN

Model-free, off-policy, 
actor-critic
DDPG, TD3, SAC

Model-based RL

§ Simple implementation
§ Good for continuous action

§ Poor sample efficiency
§ Large variance if unclipped

§ Sample efficient
§ Efficient in discrete envs

§ Sample efficient
§ Good for continuous action
§ Stable

Very high sample efficiency

§ Unstable (function appr.)
§ Limited to discrete or low-

dimensions

§ Hard to tune
§ Hyperparameter sensitivity
§ Overestimation bias

Model is hard to train, complex 
to tune, brittle & sensitive

❓

✅ ❌
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Challenge 1: sample efficiency

14

Simulation-based
Sufficient and varied 

enough data exists  from 
computationally accurate 

and tractable models

Training Validation
In the real acceleratorπ

Diff. simulations (Cheetah), DNN 
surrogates, GPU-accelerated 

Need robust policies!

Domain randomization: train on 
“perturbed” environments
Meta-RL: learn an adaptable policy that can 
quickly specialize with minimal fine tuning

sim2real gap

More robust and sample efficient in validation (real machine) 
but requires more samples (simulation)

How does this play 
in practice?

Idealised setting Noisy, unpredictable dynamics

~103-106 interactions
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Challenge 1: sample efficiency

15

How does this play 
in practice?

Towards few-shot reinforcement learning in particle accelerator control, JACoW IPAC2024 (2024) TUPS60

Beam steering task at AWAKE beamline
10 H dipoles, 10 V dipoles, 10 BPMs à ideal trajectory

https://inspirehep.net/files/628e20dc9f3d4213bcdbcdd5e2064153
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Robustness & sample efficiency

16

Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuning, Sci.Rep. 14 (2024) 1, 15733

Beam steering and focusing task at ARES linear accelerator
3 quadrupoles, 2 correctors à target beam size and position on a screen
Recovery from sudden change in incoming beam
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Reinforcement learning (with DR) Bayesian optimisation

How does this play 
in practice?

https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
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Challenge 1: sample efficiency

17

Experiment-based
Task is adequately 

constrained and learnable

Training

Very rare! Only a handful of cases

How does this play 
in practice?

(low dimensions, informative 
observations, reward shaping)

FERMI, AWAKE, Linac4, KARA

§ ~103 real-world interactions required for training

§ Low-dimensional action and observation spaces

§ Dense reward

§ Very sensitive to hyperparameter choices

§ Hard to find dedicated beamtime

§ Safety concerns

“Basic reinforcement learning techniques to control the intensity of a seeded free-electron laser”, Electronics, vol. 9, no. 5, 2020
“Model-free and Bayesian ensembling model-based deep reinforcement learning for particle accelerator control demonstrated on the FERMI FEL”, 
arXiv:2012.09737, 2022.
“Sample-efficient reinforcement learning for CERN accelerator control”, Phys. Rev. Accel. Beams, vol. 23, no. 12, p. 124 801, 2020.
“Preliminary results on the reinforcement learning-based control of the microbunching instability” IPAC2024-TUPS61
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The agent directly observes the true 
state of the environment, which 
includes everything relevant observation

state of the 
agent (belief)

true state of the 
environment

:The agent receives partial 
observations and must create its 
own state representation

𝒪# = 𝒮#$ = 𝒮#%

𝒪# ≠ 𝒮#$ ≠ 𝒮#%

Example: autonomous driving

𝒮#%	: we know all cars exact 
positions, road friction, 
weather conditions, etc.

𝒪#: pixels from cameras, 
GPS signal, lidar?
what the agent can “sense”

𝒮#$: estimated positions 
and speeds based on past 
observations
what the agent ”believes” the 
environment is

partial, noisy, filtered

18

Challenge 2: partial observability

Fully observable environments

Partially observable environments

Stacking recent observations to approximate motion
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Challenge 2: partial observability

19

Ideal setting
State fully observable

§ MDP (finite, discrete)
§ Model known
§ Value function exact
§ Optimal policy computable

Real world
State partially observable

§ POMDP (infinite, continuous)
§ Model unknown or learned
§ Value function approximated
§ Policy approximated

We can completely solve the control 
problem and find the optimal policy 𝝅∗ 

We just want good-enough policies that are 
robust, generalizable, sample-efficient, and safe

vs
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Challenge 2: partial observability

20

vs

Classical dynamic programming

§ Bellman equations + greedy action.
§ Policy evaluation, policy 

improvement, value iteration.
§ Non-tractable for large state and 

action spaces.

Modern RL (deep RL)
§ One sample does not return the true expected 

value (noisy reward).
§ The same action does not always lead to the 

same next state.
§ We don’t know the true state (only observed).

Ideal setting
State fully observable

§ MDP (finite, discrete)
§ Model known
§ Value function exact
§ Optimal policy computable

Real world
State partially observable

§ POMDP (infinite, continuous)
§ Model unknown or learned
§ Value function approximated
§ Policy approximated
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Challenge 2: partial observability

21

vs

§ Frequent and informative observations
§ Memory (e.g., recurrent architectures) or a learned model
§ Well-structured state representation
§ Low-frequency decision making

Ideal setting
State fully observable

§ MDP (finite, discrete)
§ Model known
§ Value function exact
§ Optimal policy computable

Real world
State partially observable

§ POMDP (infinite, continuous)
§ Model unknown or learned
§ Value function approximated
§ Policy approximated

Partial observability will always be a challenge in particle accelerator 
deployment, but can be mitigated with:
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Challenge 3: safety

22

Exploration vs exploitation dilemma:
We want to learn the optimal behaviour and for that we need to behave non-
optimally to explore the state-action space.

à Hard safety cannot be ensured in high-dimensional continuous state spaces!
Hard safety in RL, especially during exploration, is an active area of research

Trade-offs between safety, 
optimality, and sample efficiency.

My recommendation: do experiment-based training only in safe machines (low energy, 
electrons) or have an excellent interlock system. 

Soft safety can be implemented:
§ Shielding
§ Reward shaping
§ Uncertainty-aware planning
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Challenge 4: real-time inference

23
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Control of the microbunching instability

§ Revolution frequency: 2.7 MHz (Trev = 370 ns)
§ Synchrotron frequency: 7-9 kHz (Tsync = 110-143 μs)
§ à 300-400 Trev ~ Tsync 

1. Agent acts every:
96 x Trev ~ 28 kHz ~ 0.25 x Tsync ~ 36 μs 
during 2048 steps (samples of decimated 
signal)

2. Agent stops and is re-trained in a CPU (~2.6 s)
Ø We train every (2048 x 96) Trev = 509 Tsync 

3. New weights are sent to Versal board and 
agent starts again

Circular buffer of last 64 THz signal samples (decimated)

Doctoral thesis L. Scomparin

https://publikationen.bibliothek.kit.edu/1000180745
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Main challenges of RL deployment

24

Online Training

Validation

π

Model-free or model-based algorithms

In the real accelerator

Simulation-based Experiment-based
Su#icient and varied 

enough data exists  from 
computationally accurate 

and tractable models

Task is adequately 
constrained and learnable

Robust policy training to 
bridge sim2real gap

Careful algorithm design
Fine hyperparamer tuning

Challenge 1
 Sample e#iciency

Challenge 2 
Partial observability

Challenge 3 
Safety

( low dimensions, informative 
observations, reward shaping)

Ultra-fast control

Challenge 3 
Safety

Conventional control
> 10 kHz action1-100 Hz action

Challenge 4 
Real-time inference

In particle 
accelerators

Can it be an intelligent 
accelerator co-pilot?

RL is a promising and powerful 
framework for adaptive, goal-
directed behaviour in complex 

environments…

…that requires careful design!

🤖
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Future directions

25

Lattice-agnostic RL

Used during training, with 
randomized positions but 
following order (=DR)

Test lattices
Re-training with new lattice 
only 2% of the original 
training samples

Multi agent RL, hierarchical RL, explainable RL, more model-based RL

C. Xu et al, IPAC23-THPL029

https://www.ipac23.org/preproc/pdf/THPL029.pdf
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The Reinforcement Learning for 
Autonomous Accelerators Collaboration

26

Github: https://github.com/RL4AA

Discord: https://discord.gg/rudtJaeW

Website: https://rl4aa.github.io/

Youtube: https://www.youtube.com/@RL4AACollaboration

Paper: DOI:10.18429/JACoW-IPAC2024-TUPS62

RL4AA’25 at DESY

Yearly targeted workshops 

Annika Eichler, Christian Contreras, Christian Hespe, Simon 
Hirlaender, Jan Kaiser, Sabrina Pochaba, Borja Rodriguez 
Mateos, Andrea Santamaria Garcia, Chenran Xu

Next year RL4AA’26 workshop: 
University of Liverpool (25th – 27th April 2026)

Join our Discord

https://github.com/RL4AA
https://discord.gg/rudtJaeW
https://rl4aa.github.io/
https://www.youtube.com/@RL4AACollaboration
https://accelconf.web.cern.ch/ipac2024/doi/jacow-ipac2024-tups62/
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ansantam@liverpol.ac.uk

https://www.linkedin.com/in/ansantam/

https://github.com/ansantam

https://instagram.com/ansantam

Dr. Andrea Santamaria Garcia

Thank you for
your attention!

What questions do you
have for me?

§ Sutton & Barto book
§ Reinforcement learning lectures by David Silver
§ https://spinningup.openai.com/en/latest/

RL resources:

Some of our research:

A more detailed talk: https://doi.org/10.5281/zenodo.12649046

§ https://doi.org/10.1038/s41598-024-66263-y
§ https://doi.org/10.1103/PhysRevAccelBeams.27.054601
§ https://arxiv.org/abs/2409.16177
§ https://doi.org/10.1007/978-3-031-65993-5_21

Lecturer at University of Liverpool
Cockcroft Institute

Get the paper

mailto:ansantam@liverpol.ac.uk
https://www.linkedin.com/in/ansantam/
https://github.com/ansantam
https://github.com/ansantam
http://incompleteideas.net/book/RLbook2018.pdf
https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
https://spinningup.openai.com/en/latest/
https://doi.org/10.5281/zenodo.12649046
https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1103/PhysRevAccelBeams.27.054601
https://arxiv.org/abs/2409.16177
https://doi.org/10.1007/978-3-031-65993-5_21

