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Trends and challenges of frontier accelerators
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A vision for future accelerators, driven by ML
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Why RL for particle accelerators?

Reinforcement learning can:
= Adapt dynamically to changing
environments

= Scale better to high-dimensional
problems than other methods

Best MAE (mm)

= Consider delayed consequences

= Perform closed-loop control in real time AN e

-~
———————————————————————

—— RLO (real world)
——~- RLO (simulation)
—— BO (real world)
——- BO (simulation)
=== Nelder-Mead simplex (simulation)
—== Random search (simulation)
ES (simulation)

N

-
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= Converge faster than any other
methods after training

RL is a promising and powerful framework for adaptive, goal-
directed behaviour in complex environments
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SUPERVISED UNSUPERVISED
LEARNING LEARNING

Classification, prediction, forecasting Segmentation of data

computer learns by example computer learns without prior information about the data

00000 \?Vzaarphgre:‘ifgggsting MACHIN E 0oo00 Medical diagnosis
oo Fraud | i
oooo% Housing prices prediction LEARNING : g & Mr:ruk et(iggrrgzri/t) a(;liitnectlon
Stock market prediction J

Pattern recognition

V2

RElNFORCEMENT Self-driving cars
LEARNING ) Make financial trades

\I/’_ Gaming (AlphaGo)
Real-time decisions | Robotics manipulation

computer learns through trial and error
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Reinforcement learning “®

More than machine learning

Psychology (classical conditioning)

BEHAVIOUR Neurosc_ience (reward system)
LEARNING 7 Economlc_s (game thgory)
Mathematics (operations research)

Engineering (optimal control, planning)
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Reinforcement learning

What we understand today as RL (established in
Andrew Barto and the 1980s) inherits concepts from:

Richard Sutton Receive
AM. Turing Award

o Trial-and-error learning
Behavioural basis @
Learning emerges through repeated interaction,
reward feedback, and adaptation

o Optimal control
Mathematical framework L
Markov decision processes (MDPs), Markov

property, Bellman equation, partially
observable MDPs (POMDPs), value function,

The scientists received computing’s highest policy function, dynamic programming
honor for developing the theoretical

foundations of reinforcement learning, . o Tem poral difference Iearning
a key method for many types of AL o e eye
e Adaptability and scalability &
Enables prediction and learning from partial experiences

Quanta Magazine
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Control the plasma in a tokamak

fusion reactor

https://arxiv.org/abs/1707.02286

So, what can RL do in practice? ©

Modern RL = deep RL, which allows sequential decision making in continuous and infinite
environments thanks to function approximation with deep neural networks.

a. Player Hero b. Allied Hero  c. Allied Team  d. Enemy Team

https://www.deepmind.com/publications/playi “ SO
ng-atari-with-deep-reinforcement-learning

https://openai.com/index/openai-five/
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I. Allied Tower

s e. Enemy Creep

f. Enemy Heroes

k. Fog of War

h. Modifiers

i. ltems

j- Abilities


https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://arxiv.org/abs/1707.02286
https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control
https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control
https://openai.com/index/solving-rubiks-cube/
https://openai.com/index/openai-five/

RL in a nutshell Agent &

1. Executes action a; free-will
. 2 2. Receives observation s; perception
‘ Action a; é ——
A4

3. Receives scalar reward r; motivation

Goal O
o A
Agent Environment Reward :
&
A4 Rewardr L Ten | Scalar feedback signal r, that indicates
4 € how well the agent is doing at step ¢
State s; P S 9 g Y
. . Cumulative _
An agent (algorithm) learns through trial-and-error reward (return) G:(7) = Z YTk velon
by interacting with a dynamic environment k=0
& & &
Reward Goal
Action space p . B f Iati d
A ﬂunctlon aximisation of cumulative reward G,
SAPR Stochastic decision making is through selected actions
( y gL, V ’ V) modelled by Markov decision Simple concept from which intelligent
tl v . \ processes (MDPs), a 5-tuple behaviour emerges
State space Iransition  Discount
probability  factor "Reward is enough" by Silver et al. (2021)
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RL In a nutshell How does the agent “learn”?

What behaviours perform well in this environment? m:d > A
Policy: agent's behaviour function (how it picks its actions) m(s) = a
o n(als) = P[als]

@

Estimate the utility of taking actions in particular |
states of the environment (evaluation of the policy) Gt i
Value function: how good each state and/or action are V™, Q™ are an estimation of
_ . where the return distribution
V7= state-value function Q™ = action-value function is centered

» Prediction: evaluate the future given a policy m* = arg max E,[G,]
» Control: optimise the future (find the best policy) "

where 1t* is the optimal policy
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RL In a nutshell How does the agent “learn”?

At every time step t:

. The agent is in state s,

. The agent selects an action a; ~ (a|s)

This action is chosen based on the agent’s current policy =, which may
prioritise actions that maximise expected future reward, e.g.:

a; = arg max Q™ (s, a)
a

. The environment returns:
» Next state s;,4
= Reward r;

. The agent learns from the experience (s, a;, ¢, St+1)
Value-based methods: update value estimates (assess value of action)

Policy-based methods: directly improve the policy (how to act)
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Types of learning @

Online: data is actively collected
during training

Offline: learns from a fixed
dataset (supervised learning)

Simulation-based: training in a
virtual or simulated environment

Experiment-based: direct
interaction with a real-world system

On-policy: policy is updated from
data collected by the current
version of the policy

Off-policy: can learn from data
generated by a different policy

11



Main challenges of RL deployment

Policy and value functions are approximated by

deep neural networks (DNNs)

max J(mp) = max Er,[G¢]

Generalisation capabilities
-> quantity and quality of data

No real convergence guarantees

Training instability due to:
» Bootstrapped value targets

= Function approximation bias (net. architecture,

weight initialization, training dynamics)

= Hyperparameter sensitivity (high variance in
performance across random seeds)

6 « 0 +aV/(mg)|g

Online Training

Model-free or model-based algorithms

Challenge 1 Challenge 2 Challenge 3
Sample efficiency Partial observability Safety

: Simulation-based
: Sufficient and varied
enough data exists from

computationally accurate
and tractable models

: Experiment-based
: Task is adequately :
: constrained and learnable

:  (lowdimensions, informative
: observations, reward shaping)

Robust policy training to Careful algorithm design
bridge sim2real gap l l Fine hyperparamer tuning
Valldatlon Challenge 3 Challenge 4
In the real accelerator Safety Real-time inference

-------------------------------------------------------------------------------------------

: Conventional control : Ultra-fast control
: 1-100 Hz action 3 >10 kHz action
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o Sample efficiency @R
Challenge 1: sample efficiency  rruining cost &

Sample efficiency: number of interactions with the environment required
to achieve a certain level of performance during the decision-making process

X

Simple implementation = Poor sample efficiency
Good for continuous action Large variance if unclipped

Model-free, on-policy

Policy gradient: REINFORCE
Actor-critic: PPO, A2C

Model-free, off-policy, - Sample efficient = Unstable (function appr.)
value based R N T — = Limited to discrete or low-
DQN dimensions

Model-fr_e_e, off-policy, . Sample efficient = Hard to tune
actor-critic = Good for continuous action = Hyperparameter sensitivity
DDPG. TD3. SAC = Stable = QOverestimation bias
Model-based RL Very high sample efficiency Model is hard to train, complex

to tune, brittle & sensitive
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Challenge 1: sample efficiency [°V o thsplay

in practice?

Idealised setting —=-====================-- > Noisy, unpredictable dynamics
sim2real gap
Training Validation
................................................... 1-[ ) In the real accelerator

Simulation-based

Sufficient and varied
enough data exists from
computationally accurate

and tractable models

Diff. simulations (Cheetah), DNN
surrogates, GPU-accelerated

~103-106 interactions

Need robust policies!

!

Domain randomization: train on
“perturbed” environments

Meta-RL: learn an adaptable policy that can
quickly specialize with minimal fine tuning

More robust and sample efficient in validation (real machine)
but requires more samples (simulation)
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Challenge 1: sample efficiency | 5P

Beam steering task at AWAKE beamline
10 H dipoles, 10 V dipoles, 10 BPMs - ideal trajectory

Comparing different adapting approaches

U ——— e

'

_10_

_20 -

Returns

_30 -

—— Meta trained on the simulation
Classical training with only central task simulation as prior information.
—— Classical training without prior information

0 50 100 150 200 250 300 350

Batches
Towards few-shot reinforcement learning in particle accelerator control, JACoW IPAC2024 (2024) TUPS60
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Beam Parameter (um)

Py How does this play
Robustness & sample efficiency [ °) 5>
Beam steering and focusing task at ARES linear accelerator
3 quadrupoles, 2 correctors - target beam size and position on a screen
Recovery from sudden change in incoming beam

Reinforcement learning (with DR) N Bayesian optimisation
'I""I""I'"'I""i""I""I""I""I": [T T T N
1 ] :
500 |- | ] 1,000 ]
of I | I3 of ]
: I - :
-500 | : - 2 -1,000 | .
[ I ] © _ I ]
l 1 & -2000F | ]
1,000 F _ N P . c : :
: a[ § 3,000 ! ;
r m
-1,500 | | ] : ! ]
; , -4,000 [ ! .
-2,000-_.I...I...I....I....’i....l....l....l....l.._- IIII:IIII
0 10 20 30 40 5 60 70 80 0 10 20 30 40 5 60 70 80
=== Incoming beam change @~ —— puy —— oy py T oy

Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuning, Sci.Rep. 14 (2024) 1. 15733
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Challenge 1: sample efficiency [°V o thsplay

Training

Experiment-based

Task is adequately
constrained and learnable

(low dimensions, informative
observations, reward shaping)

Very rare! Only a handful of cases

FERMI, AWAKE, Linac4, KARA

in practice?

~103 real-world interactions required for training
Low-dimensional action and observation spaces
Dense reward

Very sensitive to hyperparameter choices

Hard to find dedicated beamtime

Safety concerns

“Basic reinforcement learning techniques to control the intensity of a seeded free-electron laser”, Electronics, vol. 9, no. 5, 2020
“‘Model-free and Bayesian ensembling model-based deep reinforcement learning for particle accelerator control demonstrated on the FERMI FEL”,

arXiv:2012.09737, 2022.

“Sample-efficient reinforcement learning for CERN accelerator control”, Phys. Rev. Accel. Beams, vol. 23, no. 12, p. 124 801, 2020.
“Preliminary results on the reinforcement learning-based control of the microbunching instability” IPAC2024-TUPS61
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Challenge 2: partial observability ... auonomous driving

Fully observable environments state of the
agent (belief)
The agent directly observes the true 0, =S4 = s¢
state of the environment, which t t t
includes everything relevant observation true state of the
environment S¢ : we know all cars exact

positions, road friction,
weather conditions, etc.

Partially observable environments O,: pixels from cameras

The agent receives partial O0; # Sf # §F GPS signal, lidar?

observations and must create its / what the agent can “sense

own state representation partial, noisy;, filtered Sta: estimated positions
and speeds based on past
observations

) ) ) _ what the agent "believes” the
Stacking recent observations to approximate motion  anvironment is

Dr. Andrea Santamaria Garcia — Reinforcement learning in particle accelerators (IPAC’25, Taiwan) - THYD1 18



Challenge 2: partial observability

Ideal setting Real world

State fully observable State partially observable

MDP (finite, discrete)
Model known VS

POMDRP (infinite, continuous)
Model unknown or learned
Value function approximated
Policy approximated

Value function exact
Optimal policy computable

We can completely solve the control We just want good-enough policies that are
problem and find the optimal policy * robust, generalizable, sample-efficient, and safe

Dr. Andrea Santamaria Garcia — Reinforcement learning in particle accelerators (IPAC’25, Taiwan) - THYD1 19



Challenge 2: partial observability

Ideal setting Real world

State fully observable State partially observable

MDP (finite, discrete) POMDP (infinite, continuous)
Model known VS Model unknown or learned
Value function exact Value function approximated
Optimal policy computable Policy approximated

$

4

Classical dynamic programming Modern RL (deep RL)
= Bellman equations + greedy action. = One sample does not return the true expected
= Policy evaluation, policy value (noisy reward).
improvement, value iteration. = The same action does not always lead to the
= Non-tractable for large state and same next state.
action spaces. = \We don’t know the true state (only observed).

Dr. Andrea Santamaria Garcia — Reinforcement learning in particle accelerators (IPAC’25, Taiwan) - THYD1
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Challenge 2: partial observability

Ideal setting Real world

State fully observable State partially observable

MDP (finite, discrete) POMDP (infinite, continuous)
Model known VS Model unknown or learned
Value function exact Value function approximated
Optimal policy computable Policy approximated

Partial observability will always be a challenge in particle accelerator
deployment, but can be mitigated with:

= Frequent and informative observations

= Memory (e.g., recurrent architectures) or a learned model
= Well-structured state representation

= |Low-frequency decision making
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Challenge 3: safety

Exploration vs exploitation dilemma:

We want to learn the optimal behaviour and for that we need to behave non-
optimally to explore the state-action space.

- Hard safety cannot be ensured in high-dimensional continuous state spaces!
Hard safety in RL, especially during exploration, is an active area of research

Soft safety can be implemented:

= Shielding Trade-offs between safety,
= Reward shaping optimality, and sample efficiency.

= Uncertainty-aware planning

My recommendation: do experiment-based training only in safe machines (low energy,
electrons) or have an excellent interlock system.

Dr. Andrea Santamaria Garcia — Reinforcement learning in particle accelerators (IPAC’25, Taiwan) - THYD1
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= Revolution frequency: 2.7 MHz (T,e, = 370 ns)

C h a I Ie n g e 4 - rea I -ti me i nfe rence * Synchrotron frequency: 7-9 kHz (Type = 110-143 s)

> 300-400 Tyey ~ Teyne

Control of the microbunching instabilit
9 y Circular buffer of last 64 THz signal samples (decimated)

5
KAPTURE-2 HighFlex 2 |
signal digitization bunch labeling .
Schottky diode : g | e s 0 50 100 150 200 250
analog pulse signal —=2 RSN —
50 GHz - 2 THz " oailiivia B 1. Agent acts every:
Low-latency high-throughput sampling Custom modular 96 X Trev ~ 28 kHZ ~ 025 X Tsync ~ 36 IJS
200MSIegichanncls feadouticard during 2048 steps (samples of decimated
G Measured latency without . ﬁbf(;ﬁl;?é;l Slgnal)
~ P rotoco . . .
retraining 22 ke i 2. Agent stops and is re-trained in a CPU (~2.6 s)
Xilinx Versal > We train every (2048 x 96) T, = 509 T

,_ ~ Feedback system
3 B execute action

1104 m S,
Low-level RF amplitude and G
2.7MHzrev. freq. 4 phase modulation control  serial

every 6 revolutions

0.5-2.5GeV

VCK190

P decide action

Low-latency RL
inference platform
1.6 Tera FP

3. New weights are sent to Versal board and
agent starts again

operations/s [
/ o
1Gb Al engines: feature extraction I »
c i = @
o ethernet and agent inference Se- @
%5 . it PU/GPU .~ G o 8
° <
3 B % " Critic C U/G U ARM processor: slow-control ‘g o 'g
R g e e Expected re-train agent — _ . 2_ g
% 9 7] — o ~_ X FPGA: data preparation 50— <
oo o> V2 ~____—e cumulative y s
o Cg e e O e
B s 0= o7/ reward ,
Q ° Z 1S
‘;“ X 528 e enex\No Depends on \ j
@ § O+ o val¥ 26s decimation

Doctoral thesis L. Scomparin
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In particle

Main challenges of RL deployment ... o

Online Training

Model-free or model-based algorithms

Challenge 1 Challenge 2 Challenge 3 . . .

Sample efficiency ~ Partial observability Safety RL IS A prom,s,ng and powerfUI

;‘"'g;;;;‘;;;;;;;‘,‘,‘_‘;;;;‘;""; ;"g;‘,;,‘;;{,‘;;;‘,‘,‘;'.‘.;;;;;;.""; framework for adaptive, goal-

. cnoughaetaoxios from | constainea and eamab directed behaviour in complex

I environments...
obust polley taining o l l e ...that requires careful design!
Validation allenge allenge . . .
In the real accelerator Chsgfeti ’ Reaﬁ:‘in':(lain%er:nce Can lt be an lntelllgent @6@
S eeseasreseassrarmsresssassassnsseanrnns i preesssssssrsss e -Ni 2
Conventional control : : Ultra-fast control accelerator co plIOt' w
' 1-100 Hz action > 10 kHz action :
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Future directions

Lattice-agnostic RL

Bl Quad [ Corr [ Screen

Used during training, with
&QO =N Brrsssssflasnnnns 'R i " -I ------ randOmlzed pOSItlons but
> following order (=DR)

Test lattices
Re-training with new lattice

only 2% of the original
Q}% =g  HEEIE B B N N NN NS N IgE = EEE H s B N EESE training Samples
Q
v

0.0 0.5 10 1.5 20
C.Xuetal IPAC23-THPL029  Position [m]

\f
%,
%

1
—_—
e
._-

—
A

Multi agent RL, hierarchical RL, explainable RL, more model-based RL
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- - 1 @e%E
The Reinforcement Learning for RIL4AA ;@%

Autonomous Accelerators Collaboration -

1 ) g:

Join our Discord

Yearly targeted workshops
A Github:  hitps://github.com/RL4AAA
" RLAAA"25 Discord: htips://discord.gg/rudtJaeWV

COLLABORATION
WORKSHOP

Website: htips://rl4aa.github.io/

Youtube: https://www.youtube.com/@RL4AACollaboration
Paper. DOI:10.18429/JACoW-1PAC2024-TUPS62

Annika Eichler, Christian Contreras, Christian Hespe, Simon
Hirlaender, Jan Kaiser, Sabrina Pochaba, Borja Rodriguez
Mateos, Andrea Santamaria Garcia, Chenran Xu

RL4AA ‘25 at DES Y

Next year RL4AAA26 workshop:
University of Liverpool (25t — 27t" April 2026)
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Thank you for
your attention!

What questions do you
have for me?

A more detailed talk: https://doi.org/10.5281/zenodo.12649046

RL resources:

. Sutton & Barto book
= Reinforcement learning lectures by David Silver
=  https://spinningup.openai.com/en/latest/

Some of our research:

https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1103/PhysRevAccelBeams.27.054601
https://arxiv.org/abs/2409.16177
https://doi.org/10.1007/978-3-031-65993-5_21

Dr. Andrea Santamaria Garcia

Lecturer at University of Liverpool
Cockcroft Institute

ansantam@liverpol.ac.uk
https://www.linkedin.com/in/ansantam/
https://github.com/ansantam
https://instagram.com/ansantam



mailto:ansantam@liverpol.ac.uk
https://www.linkedin.com/in/ansantam/
https://github.com/ansantam
https://github.com/ansantam
http://incompleteideas.net/book/RLbook2018.pdf
https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
https://spinningup.openai.com/en/latest/
https://doi.org/10.5281/zenodo.12649046
https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1103/PhysRevAccelBeams.27.054601
https://arxiv.org/abs/2409.16177
https://doi.org/10.1007/978-3-031-65993-5_21

