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Abstract

We present the Geoff framework for automated accelera-
tor tuning, demonstrated in real-world experiments at GSI.
Using classical optimizers like BOBYQA, Geoff enables fast
deployment, control room integration, and efficient beam
optimization, reducing SIS18 injection losses from 45 % to
15 % and speeding up FRS setup. This work also reports
the first application of multi-objective and multi-fidelity
Bayesian optimization to SIS18 injection tuning. Comple-
mentary simulation studies employ model predictive control
via model-based reinforcement learning for fast, constraint-
aware tuning. These model-based methods outperform clas-
sical optimizers by guiding experiments with probabilistic
surrogate and dynamic models.

Geoff’s modular design supports easy switching between
algorithms and integration with modern ML tools, bridging
accelerator operations and data-driven optimization.

GEOFF AT GSI/FAIR

The Facility for Antiproton and Ion Research (FAIR) is
going to be an international center of heavy-ion accelera-
tors, that will drive the forefront of heavy-ion and antimatter
research [1]. The complexity of FAIR requires a high level
of automation for future operation [2]. One part of this au-
tomation effort is to provide a framework that allows both
machine experts and operators to solve concrete optimiza-
tion problems, and to make these solutions reusable in an
operational context. We call this project the “Generic Opti-
misation Frontend and Framework”, or Geoff for short [3].

Geoff is based on the Python programming language,
which is widely used in scientific research, has a vibrant
ecosystem of machine learning (ML) algorithms, and is per-
ceived as very beginner-friendly. Both language and frame-
work have proven themselves flexible enough to be quickly
adapted to new problems.

Geoff is used extensively at CERN—from linacs to SPS
and ISOLDE—and is being deployed at GSI/FAIR [4]. It is
usually embedded in a GUI application, but can also be used
via command-line scripting to shorten the edit-check-run cy-
cle between code changes and test runs. Geoff standardizes
interfaces for optimization tasks [5] and provides adapters for
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Figure 1: Model of Geoff and its components. The optimizer
interface includes BOBYQA, Bayesian optimization (BO),
and reinforcement learning (RL).

various third-party packages, e.g., SciPy, Stable Baselines 3,
and Scikit-Optimize. Optimization problems, implemented
as plugin packages, can scale to arbitrary complexity and
depend on any Python package. Custom figures can be gen-
erated and updated continuously to monitor the algorithm’s
progress. It can use any control system and communicate
with external simulation tools, as long as Python bindings
exist (see Fig. 1).

MULTI-TURN INJECTION

The SIS18 serves as a booster for SIS100. Multi-turn in-
jection (MTTI) into it is a key bottleneck for achieving FAIR
intensity goals. Beam loss—induced vacuum degradation
limits intermediate-charge-state beam intensity, so injec-
tion losses—occurring at the septum or acceptance—must
be minimized. Four time-varying bumper magnets create
a closed-orbit bump, guiding each incoming beam into the
available horizontal phase space near the previous injec-
tion [6,7].

In November 2023 and May 2024, optimization runs at
GSI evaluated the use of Geoff. The goal was to minimize
SIS18 injection losses by adjusting five injection param-
eters—orbit bump amplitude and reduction, two septum
steerers, and a timing offset—and four TK steerers. To avoid
bias from favorable initial states, parameters were random-
ized before each run. Loss was estimated from the differ-
ence between ideal and measured SIS18 currents (Fig. 2).
BOBYQA was chosen as the optimizer, with an initializa-
tion phase of N = 19 evaluations for nine parameters, as
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Figure 2: Nominal (black) and ideal (red) beam current dur-
ing injection. The dashed line marks end of incoming beam-
lets. The reward is based on their difference.
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Figure 3: SIS18 MTI online steering with BOBYQA. Gray
area: initialization; final point: extra evaluation at optimum.

shown in Fig. 3. Each iteration used the median of three
measurements to reduce fluctuations. In November 2023,
the beam loss decreased from 45 % after manual tuning to
15 % after full optimization. In May 2024, the loss dropped
from 30 % manually to 15 % after optimization. Each run
took 15-20 minutes, depending on external factors [8].

FRAGMENT SEPARATOR OPTIMIZATION

At GSI, setting up the Fragment Separator (FRS) for ex-
periments currently requires manual adjustments. This takes
up to one third of experimental time. Optical mismatches
between FRS and downstream ESR can make some exper-
iments infeasible, as manual tuning is insufficient to reach
the required beam intensity due to limited diagnostics and
many influencing parameters. The FAIR Super-FRS, with
four times more magnets than the FRS, will increase com-
plexity and setup time, making automated tuning essential.
Initial automation uses Geoff for numerical optimization.

The first application aligned the beam at a target using
four correctors, measured via profile grids and Gaussian fits.
In a June 2024 run [9], convergence occurred in 20 iterations
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Figure 4: Online focusing with BOBYQA: Converges
after ~15 iterations, aligning U°!* beam vertically via
quadrupoles.

(about 15 minutes), though one corrector was incidentally
near the optimum. Measurement speed is limited by the
slow-extraction cycle and grid readout [8].

Beam focusing at the main dispersive focal plane (S2) was
then automated next (Fig. 4). A tantalum target produced
multiple uranium charge states; the U1+ beam was focused
by adjusting quadrupoles. Particle trajectories were recon-
structed using a TPC detector and classified via scikit-
learn, then converted to a single figure of merit describing
beam spot focusing. The algorithm found the optimum after
15 of 25 iterations [8,9].

Ongoing developments include computing transfer maps
from particle-by-particle phase-space data using ML and
symplectic map theory, along with improved goal functions
for sequential quadrupole and sextupole tuning [10].

ADVANCED TECHNIQUES

As accelerator facilities grow in complexity and demand
higher beam quality and efficiency, more advanced optimiza-
tion methods are needed. Classical algorithms like BOBY QA
are robust and efficient for many tasks but can struggle with
high-dimensional or highly non-linear parameter spaces.
Techniques such as Bayesian optimization (BO) and data-
driven Model Predictive Control (MPC) provide frameworks
that model uncertainties, learn from past data, and adapt dy-
namically.

Bayesian Optimization

Bayesian optimization (BO) is a sample-efficient method
for optimizing expensive black-box functions [4, 11]. It
builds a probabilistic surrogate (typically a Gaussian pro-
cess) and uses an acquisition function to balance exploration
and exploitation. This makes it ideal for accelerator tuning,
where evaluations are costly or beam losses must be mini-
mized [6,7,12].

For SIS18 MTI, BO was applied using the XSuite sim-
ulation model and the input parameters in Table 1. The
model was carefully validated against experiments [6,7, 12].
Both single-objective (minimizing injection loss) and multi-
objective optimization (trading off injection loss and multi-
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Table 1: Injection Simulation Input Parameters

Input parameter Description

Xotb Orbit bump amplitude at IP?

X Orbit bump angle at IP

Xdist Mean injection position at IP?

Xist Mean injection angle at IP?

M Injected distribution mismatch [13]
A Orbit bump decay per turn

(oN Horizontal tune

2 Injection point
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Figure 5: MOBO results: blue dots for all measurements and
orange circles for Pareto front. BOBYQA results: red for
SIS18 parameters, green for full optimization.

plication factor) were considered. Multi-Objective Bayesian
optimization (MOBO) approximates the Pareto front by
selecting candidates that improve the expected hypervol-
ume, enabling better trade-offs than single-objective meth-
ods [4, 14]. Figure 5 shows that MOBO identifies more solu-
tion sets and achieves better trade-offs than BOBYQA. The
expected increase in losses with higher stored turns (multi-
plication factor) is visible, consistent with simulations using
genetic algorithms [14].

Convergence studies tested various kernels and acquisi-
tion strategies via PyTorch, GPyTorch, and BoTorch [15-17].
Portfolio strategies GP-Hedge and GP-Exp3 [18, 19] outper-
formed single acquisition functions, with GP-Exp3 preferred
for computational efficiency. Analysis of 180 optimized in-
puts (Fig. 6) revealed that some parameters (e.g. xj;,,) have
little effect, allowing a reduced input space Q with fixed x_
and x},, to further improve optimization performance [20].

Multi-Fidelity Bayesian Optimization

Beam injection into SIS18 is currently tuned with black-
box optimization, where high losses and many iterations
occur, especially early in tuning. This is dangerous in case of
uranium beams, where minimizing loss-induced radiation is
essential. Effective strategies must deliver high performance
with few costly machine interactions. Multi-fidelity BO ad-
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Figure 6: Distribution of 180 optimized input values of larger
than 0.9 injection efficiency.
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Figure 7: Schematic of multi-fidelity BO: low-fidelity simula-
tions (s < 1) and high-fidelity experiments (s = 1) combined
to efficiently optimize expensive functions.

dresses this by treating fidelity as an input to the surrogate
model [21]. Low-fidelity simulations provide approximate
but cheap information, while high-fidelity machine exper-
iments are accurate but costly. The algorithm adaptively
balances both, accelerating tuning and reducing machine
wear without compromising quality (Fig. 7).

Remote Geoff extends Geoff by offloading computation-
ally demanding algorithms—such as multi-fidelity BO—to
external resources like HPC clusters, while securely inter-
acting with the accelerator [22].

Using the MTI simulation framework, initial experiments
showed substantial reductions in required machine interac-
tions. Figure 8 shows fourteen low-fidelity simulations in
blue, eleven measurements in red, and the optimized result
in orange. Due to time constraints, iterations were capped
at 25 and optimization limited to the five SIS parameters.
Despite this, beam losses were reduced from about 45 %
(manual tuning) to 35 %, enabled by sufficiently accurate
low-fidelity guidance.

Data-Driven Model Predictive Control

Data-driven MPC combines model-based reinforcement
learning (MBRL) with control theory. MBRL learns a prob-
abilistic surrogate, while MPC rolls it forward over a finite
horizon to minimize beam-loss cost under limits. This yields
a controller that converges rapidly, requires far fewer ma-
chine interactions than brute-force tuning, and preserves
safety [23-27]. Unlike greedy optimization, which treats
each step independently, MPC builds a reusable dynamics
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Figure 8: Multi-fidelity MTI optimization: interactions re-
duced from 25 to 11 using high-fidelity (red) and low-cost
simulations (blue).
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Figure 9: Episode resets appear as jumps, and shaded regions
show prediction uncertainty, which decreases with more
data.

model, plans ahead to respect constraints, and reaches target
performance with fewer trials.

MPC was applied in simulation to improve MTI [23].
Results are shown in Fig. 9. The top panel depicts the system
state—beam loss, septum loss, and two current integrals (cf.
Fig. 2); the middle shows the evolution of control actions
from Table 1 (excluding tune); and the bottom tracks the
reward, defined as the RMS deviation between ideal and
actual beam current. As training progresses, rewards improve
and model uncertainty decreases. Episodes are reinitialized
with randomized starting conditions and end early if rewards
exceed a threshold or action limits are violated; otherwise,
after 25 steps.

OUTLOOK

This work demonstrates the flexibility and practical value
of the Geoff framework for automated accelerator tuning.
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Starting with classical algorithms like BOBYQA, Geoff
enables rapid deployment, integration into control environ-
ments, and efficient optimization of beam parameters.

Experimental results at GSI show substantial gains: SIS18
injection losses dropped from 45 % to 15 %, and FRS setup
times were significantly reduced. Losses during slow extrac-
tion were also mitigated through automated optimization,
supporting more robust and efficient operation. This work
also introduces multi-objective and multi-fidelity Bayesian
optimization for SIS18, alongside model predictive control
and constraint-aware tuning. These model-based approaches
outperform classical methods by learning probabilistic or
dynamic models that guide experiments and reconcile com-
peting objectives.

Geoff’s modular design supports easy switching between
optimization strategies and integration with external analysis
tools and modern ML libraries, bridging the gap between
accelerator operations with data-driven methods.
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